Multi-objective operation optimization of regional integrated energy system based on NSGA-II algorithm
نویسندگان
چکیده
With the deepening of China’s energy market reform and promotion integrated services, regional system becomes an important development direction supply system. In order to maximize economic efficiency reduce air pollutant emission system, distributed power generation module cooling-heat-power (CCHP) triple-supply are formed into a model, balance, equipment capacity environmental factors constrained with objective function minimizing daily operation cost as well emission. Based on mathematical framework model optimal control strategy, NSGA-II algorithm is used solve multi-objective programming obtain Pareto solution set, hourly output both benefits obtained. The results show that operating costs emissions district significantly reduced compared those without optimization, which effectively solves problems low serious pollution achieves benefits.
منابع مشابه
Multi-objective Pareto optimization of bone drilling process using NSGA II algorithm
Bone drilling process is one the most common processes in orthopedic surgeries and bone breakages treatment. It is also very frequent in dentistry and bone sampling operations. Bone is a complex material and the machining process itself is sensitive so bone drilling is one of the most important, common and sensitive processes in Biomedical Engineering field. Orthopedic surgeries can be improved...
متن کاملmulti-objective optimization of hydropwoer multi-objective optimization of hydropower reservoirs operation based on the pattern of PAB markets
In recent years, the structure of the electricity industry has undergone a change and since November 2003, when the electricity market of the country was launched, its monopoly structure has become a competitive structure. In this market, the forecast of electricity prices is not only necessary in pricing but also plays an important role in finding the optimal operation strategy by the power pl...
متن کاملSynchronous R-NSGA-II: An Extended Preference-Based Evolutionary Algorithm for Multi-Objective Optimization
Classical evolutionary multi-objective optimization algorithms aim at finding an approximation of the entire set of Pareto optimal solutions. By considering the preferences of a decision maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended prefere...
متن کاملA Multi-objective Cross-training Plan Based on NSGA-II
The previous research on cross-training mainly focused on productive efficiency. However, enhancing labor’s satisfaction of tasks is as much important as improving production performance. This paper addresses a new cross-training policy for an assembly cell from the point of view of humanization. A multi-objective 0-1 integer programming model is presented to implement the crosstraining policy ...
متن کاملMOEICA: Enhanced multi-objective optimization based on imperialist competitive algorithm
In this paper, a multi-objective enhanced imperialist competitive algorithm (MOEICA) is presented. The main structures of the original ICA are employed while some novel approaches are also developed. Other than the non-dominated sorting and crowding distance methods which are used as the main tools for comparing and ranking solutions, an auxiliary comparison approach called fuzzy possession is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S web of conferences
سال: 2021
ISSN: ['2555-0403', '2267-1242']
DOI: https://doi.org/10.1051/e3sconf/202125702022